
The overpowering humidity of a Florida summer isn’t really the best place
to introduce a new set of development tools, but over 6500 developers
recently gathered in Orlando for Microsoft’s 2000 Professional Developers’

Conference. Normally a many-tracked conference covering the whole range of
Microsoft’s products and operating systems, and the interests of a wide cross-sec-
tion of developers working with Microsoft technologies, this year’s event was
different. Instead it was the first public appearance of the technologies that form
the building blocks of June’s Forum 2000 announcement of .NET.

With senior staff admitting that they’re betting the future of the company on the
.NET platform, it’s clear that it is intended to be the foundation of the entire next
generation of Microsoft’s software - from operating systems to applications,
servers and games, and even to the flagship Office suite. However, despite its
wide ramifications, the basis of .NET lies in the Internet. As Paul Maritz, Group
Vice President, Platforms Strategy And Developer Group, describes it, .NET is an
evolution from the single Web site model to what he calls “Web services”.

Web Services
Web services does not mean your typical online application, like Amazon.com or
your current ASP of choice; instead, XML data connections link applications and
services over the Internet, as well as enabling the use of “smart” clients rather
than Web browsers. Developers and enterprises will find that the .NET frame-
work is nothing but a set of technologies designed to turn Windows into an
Internet-based distributed computing platform, with integral Enterprise Appli-
cation Integration (EAI) capabilities through its use of the SOAP (Simple Object
Access Protocol) XML communications technology developed by Microsoft,
Userland, DevelopMentor and IBM.

Anyone wanting to start work with .NET will have to wait until the next release
of Microsoft’s development suite, Visual Studio. Previously known as Visual
Studio 7, it will instead be given the .NET suffix - like all the services and
applications Microsoft will be launching as part of this initiative. Together with
a set of server suites, including new electronic commerce tools, an XML-aware
version of SQL Server and a set of building-block Web services like the existing
Passport distributed Web authentication system, Microsoft intends to use Visual
Studio.NET to introduce a wide range of new technologies, including the much
trumpeted C#, a new C++ derived language. Visual Studio.NET should enter
public beta shortly, with a final release due in the summer of 2001. An early
version was released at the PDC, and part of it, in the form of the .NET SDK
technology preview, can be downloaded from Microsoft’s MSDN Web site.

One of the biggest changes in Visual Studio.NET is a new multi-language strategy.
Not only does Microsoft now have a single development environment for all its
own languages but, with the introduction of the Common Language Runtime (the
CLR), Visual Studio.NET offers a framework for third parties to develop lan-
guages that can be used through the familiar Visual Studio IDE. Languages
announced at the PDC included new versions of ActiveState’s Perl and Python
implementations, as well as implementations of COBOL and the functional
programming language Eiffel. With Visual Studio.NET and the new ASP+ Web
application delivery tool, you’re now able to create Web applications in COBOL
without having to switch development platforms - if that’s what you really want
to do.

Understanding
Microsoft’s .NET

Issue 125:December 2000 File: T1836.1
Page 3 Tutorial:Internet

Announced at
Microsoft’s Forum 2000,
Microsoft’s .NET
platform introduces a
radical new way of
developing Internet
applications. By basing
the .NET vision on open
standards, Microsoft has
finally admitted that an
all-Microsoft shop is
unlikely.

By Simon Bisson
Internet Consultant

PC Network Advisor
www.itp-journals.com



Common Language Runtime
The CLR is the heart of the whole .NET framework, and is critical to its success.
One of its more important features is its single object framework, which allows
multiple languages to work together. Using the CLR, a Visual Basic.NET program
can call a C# component that itself works with objects written in Eiffel or COBOL
- or Perl or Python or Java. The single object framework even makes it possible
for objects written in one language to inherit from another, as the CLR provides
a strongly typed environment that third-party developers can build languages on
ready for use within the Visual Studio IDE, and a common object model that
means that all components utilising the CLR inherit from the same base classes.
With Web application development today meaning multi-skilled development
teams are working on large component-driven application architectures, these
technologies will give overstretched project managers the ability to use their
developers most effectively.

By making the CLR the key to application development in Visual Studio.NET,
Microsoft has also changed the way its development tools compile the resulting
code. Where Visual Studio currently uses a conventional compilation to produce
processor-dependent binaries (along with the usual megabytage of support
libraries and runtimes), things are very different in Visual Studio.NET. If you’ve
worked with Windows CE, you’ll be familiar with the Common Executable
Format developed to deal with the many processors used in Windows CE devices;
it is compiled at runtime by the Windows CE operating system. Visual Stu-
dio.NET takes a similar approach by compiling to an Intermediate Language (IL),
which is suitable for delivery to any system that supports the CLR. The final
compilation is carried out using a JIT compiler at runtime, with two possible
compilation modes: a slow compilation that produces optimised code, and a fast
“dirty” compiler. The IL code is produced no matter which language you use -
unless you choose to produce “unmanaged C++”, which still compiles directly
to binaries.

C#
Looking around the Net, it’s clear that one of the more controversial components
of Visual Studio.NET and the whole NET framework is the introduction of a
whole new language, C#. The latest member of the C/C++ family, C# has been
designed by a team led by Anders Hejlsberg (who created Delphi for Borland),
to create a C-style language focused on the creation of software components. As
part of Microsoft’s COOL project, C# has been seen as Microsoft’s response to the
ongoing Java legal action with Sun, which has stopped it producing a Java
development environment. It’s true that C# does contain some similar features to
Java - including garbage collection. However, the development of C#, which has
been going on longer than Sun’s lawsuit, is best seen in the light of the overall
distributed computing model at the heart of .NET, as a language designed from
the ground up to create Web-accessible services and components.

As Hejlsberg explained in his PDC presentations, everything in C# is an object,
enabling complex components to be developed quickly. By including attributes
in object definitions, C# programs are able to take advantage of specific Visual
Studio.NET compiler functions and external libraries built into the CLR, including
delivering object calls as SOAP interfaces. To counter fears that C# is a proprietary
language, Microsoft has also offered the C# language and the CLR to the Swiss-
based ECMA standards body, turning it into an open standard handled by the
same neutral organisation that manages the development of JavaScript.

Commitment To XML
Since Microsoft included an XML parser in Internet Explorer 4.0, it’s been clear
that it has made a large commitment to XML. The development of the BizTalk
XML-based EAI tool was another sign of XML support - as was the recent display
of a custom version of Visio that produces XML schema for BizTalk. However,
the most important part of Microsoft’s XML strategy for .NET is its work on the
open SOAP standard alongside Macintosh content management specialists Fron-
tier, a process recently joined by IBM. The Simple Object Access Protocol is a
simplified form of the more complex RPC standard, redesigned for use over http

Issue 125:December 2000 File: T1836.2
Page 4 Tutorial:Internet

“With the
introduction of the
Common Language
Runtime (the CLR),
Visual Studio.NET
offers a framework
for third parties to
develop languages
that can be used
through the familiar
Visual Studio IDE.”

PC Network Advisor
www.itp-journals.com

Understanding Microsoft’s .NET



connections. This allows remote objects’ methods to be called and the results
delivered over a common protocol. As http is a connectionless protocol, a SOAP
application is dependent on advertised services and on a reliable network - there’s
no point in including SOAP components in an application designed to run over
a mobile phone connection without using assured message delivery tools like
IBM’s MQ Series or Microsoft’s MSMQ.

As a result of this commitment, Visual Studio.NET has been given the ability to
automatically create XML descriptions of the available SOAP connections on any
Web service, using the SOAP Contract Language (SCL). An SCL document is an
XML description of a set of objects, together with the available methods - and the
URLs used to call them. A developer importing an SCL description into Visual
Studio will find that the IntelliSense auto-completion features are aware of the
Web services imported into the IDE, ready for their use in your code.

Error Handling
One key issue when working with SOAP is that there are no automatic error-han-
dling features in the CLR, so you will have to develop error-handling code of your
own to cope with network problems or failures in remote Web services. As .NET
moves more and more developers into creating distributed applications, good
error-handling techniques will become more and more important. Visual Ba-
sic.NET will include new constructions to help create error-handling code, using
the familiar try-and-catch exception handling used in Java. Web services will add
new administrative issues for companies wanting to include them in their appli-
cations. Before using SOAP connections to third-party services, including Mi-
crosoft’s planned .NET building blocks like Passport, organisations will need to
treat its relationships with Web service providers as it would with any ASP,
including the negotiation of service-level agreements - making sure that the legal
framework for trusting key components of business-critical applications to third
parties is in place before any development begins.

New Way Of Working
Working with .NET is going to introduce new complexities as quickly as it
provides solutions for age-old distributed computing problems. As companies
begin to start using Web services to provide both internal and external user
interfaces, the ability to develop Web front-ends for applications quickly and
effectively will become critical. Previously Microsoft’s Web development tech-
nologies were firmly based around FrontPage and Visual InterDev, using
VBScript in Active Server Pages (ASP) to include business logic in Web applica-
tions. This could be a slow process, as designers and developers had to work
closely together, making sure that code and design were able to work together.

.NET is intended to reduce these tensions and to speed up development of Web
interfaces through ASP+. This finally allows developers to separate design from
their business logic with a new way of working, closely related to Visual Basic
6.0’s Web classes: Web forms. By allowing design and code to reside in separate
files, and by basing ASP+ on the .NET CLR, this also means that Web application
developers can work in languages other than VBScript or JScript, as compiled
languages will replace the awkward ASP server-side scripts. There’s no need to
worry about having to update existing ASP applications, as these can run in
parallel with ASP+, reducing the need for conversions. However, you’re likely to
want to change them as soon as possible - even if it’s just to take advantage of
Web forms.

Issue 125:December 2000 File: T1836.3
Page 5 Tutorial:Internet

“The underlying
vision of .NET - a
smart network made
more powerful by
smart clients - is a
compelling one,
especially in these
days of electronic
business and
Web-mediated
transactions.”

Further Information
www.microsoft.com/net/
msdn.microsoft.com/vstudio/nextgen/default.asp
www.ecma.ch/
msdn.microsoft.com/net/
www.activestate.com

PC Network Advisor
www.itp-journals.com

Understanding Microsoft’s .NET



Mobile Solutions
The videos on the Forum 2000 Web site make it clear that Microsoft’s .NET vision
also entails a world of mobile users, with PDAs and mobile phones as standard
access devices. With the US rapidly catching up with Europe and Asia, and with
the 3G global standard just around the corner, mobile communications and
applications are going to become more and more common. If you’re going to be
using Visual Studio.NET to develop mobile solutions, Microsoft provides you
with a derivative of the Web forms technologies: mobile forms.

Mobile forms are designed to allow device-independent application develop-
ment, so the same mobile form will work with a Nokia 7110 and a Palm PDA, as
it will deliver content based on the type of device accessing an application. There’s
a possible problem here, as this approach does require Microsoft to gain a deep
understanding of the various characteristics of the many different mobile devices
that will be rolled out over the next year. If you consider the deep rivalry between
Microsoft and companies like Palm and Symbian, it’s clear that this could be
difficult to achieve. However, all is not lost, as it will be possible for developers
to create their own device profiles for use with mobile forms.

Conclusion
We’re going to have to wait some time before we can start producing large-scale
.NET applications. The next year’s release of the Visual Studio.NET development
environment will allow you to create new distributed cross-platform applications
built around the .NET framework, but full-scale implementation of Microsoft-cen-
tric .NET services will have to wait for at least one generation of the BackOffice
server suite, and at least two generations of Windows. This is because it won’t be
until the Backcomb release of Windows 2000 that .NET will be supported fully at
an OS level, along with a new user interface, and thus the full .NET environment
will not be available until well into 2002 (and maybe 2003). So actual deployment
of the full .NET vision is unlikely to occur for another year or so after that - taking
us to 2003 or 2004. The sheer volume of new tools, technologies and ways of
working in the .NET framework will make uptake a slow process, and the learning
curve will be particularly steep if you’ve not yet begun working with XML and
Web technologies.

If you want to start work with .NET then you can either download the SDK from
the MSDN site, or wait until Visual Studio is released some time in the second
half of 2001. There’s a lot in .NET, especially with the XML technologies. These
XML services will make it attractive to businesses wanting to use the Web services
model enabled by SOAP for enterprise application integration of existing legacy
applications and hardware. If you want to get a head start on using SOAP with
your existing applications and systems, there’s also a toolkit that adds SOAP
capabilities to Visual Studio 6 on the MSDN Web site, or various other online
SOAP resources that offer tools for other languages - including Perl and Java.

The underlying vision of .NET - a smart network made more powerful by smart
clients - is a compelling one, especially in these days of electronic business and
Web-mediated transactions. By basing .NET on open standards Microsoft has
finally admitted that an all-Microsoft shop is unlikely, and that companies will
use the systems they are happiest with, delivering networks that mix Windows,
Unix, mid-range systems and mainframes. In this world .NET is just another glue
technology, as well as the future of Windows. Microsoft says it is betting the
company on .NET, and they must think it’s a bet they can win.

Issue 125:December 2000 File: T1836.4
Page 6 Tutorial:Internet

Copyright ITP, 2000

PCNA

“The most important
part of Microsoft’s
XML strategy for
.NET is its work on
the open SOAP
standard alongside
Macintosh content
management
specialists Frontier,
a process recently
joined by IBM.”

PC Network Advisor
www.itp-journals.com

Understanding Microsoft’s .NET


